APPENDIX G

FACILITY AIR LEAKAGE RATES

G-1. Facility Envelope Air Leakage Database.

The facility leakage information in Table G-1 results from field leakage testing with a calibrated blower door assembly. The graphs in Figures G-1 through G-9 show leakage characteristics for the facility construction types indicated.

G-2. Facility Envelope Construction Types.

Facility wall and roof construction is categorized into the general types below. These categories are referred to in the leakage characteristic graphs.

- a. Wall Construction Types.
- (1) Type 1: 25-mm (1-inch) stucco or siding, insulation, 20-mm (¾-inch) plaster or gypsum.
- (2) Type 2: 25-mm (1- inch) stucco or siding, 200-mm (8-inch) concrete block or cast-in-place concrete, 20-mm (¾-inch) plaster or gypsum.
 - (3) Type 3: steel siding, insulation, steel siding.
- (4) Type 4: 100-mm (4-inch) face brick, insulation, 300-mm (12-inch) concrete block or cast-in-place concrete, 20-mm (¾-inch) plaster or gypsum.
- (5) Type 5: concrete thickness as indicated in millimeters (inches), insulation, 20-mm (¾-inch) plaster or gypsum. No windows.
 - b. Roof Construction Types.
 - (1) Type 1: slag or stone, felt membrane, insulation, steel siding.
 - (2) Type 2: slag or stone, felt membrane, lightweight concrete.
 - (3) Type 3: Concrete thickness in mm (inches), insulation.

Table G-1									
Facility Air Leakage Rates									
				Airflow	Airflow	Area Unit	Area Unit	Volume Unit	Volume Unit
				Leakage Rate	Leakage Rate	Leakage Rate	Leakage Rate	Leakage Rate	Leakage Rate
				@ 5 Pa	@ 75 Pa	@ 5 Pa	@ 75 Pa	@ 5 Pa	@ 75 Pa
		TFA Area	TFA Volume	(0.02 in wg)	(0.3 in wg)	(0.02 in wg)	(0.3 in wg)	(0.02 in wg)	(0.3 in wg)
Bldg.	Building	sq m	cu m	L/s	L/s	$L/s/m^2$	$L/s/m^2$	L/s/m ³	$L/s/m^3$
No.	Function	(sq ft)	(cu ft)	(cfm)	(cfm)	(cfm/ft ²)	(cfm/ft ²)	(cfm/ft^3)	(cfm/ft ³)
1	C3	7,061	94,582	516	2,550	0.0731	0.3611	0.0055	0.0270
		(76,000)	(3,340,000)	(1,094)	(5,421)	(0.0144)	(0.0713)	(0.0003)	(0.0016)
2	Comm.	412	1,006	185	814	0.4490	1.9757	0.1839	0.8091
	Facility	(4,440)	(35,520)	(392)	(1,725)	(0.0883)	(0.3885)	(0.011)	(0.0486)
3	Admin.	534	2,280	136	572	0.2547	1.0712	0.0596	0.2509
		(5,750)	(80,500)	(288)	(1,212)	(0.0501)	(0.2108)	(0.0036)	(0.0151)
4	Squadron	758	3,235	67	365	0.0884	0.4815	0.0207	0.1128
	Operations	(8,160)	(114,240)	(142)	(773)	(0.0174)	(0.0947)	(0.0012)	(0.0068)
5	Squadron	929	283	612	3,412	0.6588	3.6728	2.1625	12.0565
	Operations	(10,000)	(100,000)	(1,297)	(7,234)	(0.1297)	(0.7234)	(0.0130)	(0.0723)
6	Gymnasium	740	7,213	1,491	4,976	2.0149	6.7243	0.2067	0.6899
		(7,960)	(254,700)	(3,161)	(10,550)	(0.3971)	(1.3254)	(0.0124)	(0.0414)
7	Gymnasium	1,022	9,968	1,096	5,296	1.0724	5.1820	0.1100	0.5313
		(11,000)	(352,000)	(2,323)	(11,228)	(0.2112)	(1.0207)	(0.0066)	(0.0319)
8	Dormitory	1,105	6,734	1,598	4,571	1.4462	4.1367	0.2373	0.6788
	ž	(11,890)	(237,800)	(3,388)	(9,691)	(0.2849)	(0.8151)	(0.0142)	(0.0408)

G-3. Building Number 1.

Building number 1 is a poured concrete structure with 3.1-m-thick walls and roof. The facility has no windows. Leakage rate versus internal pressure is shown in Figure G-1. Building leakage rates can be calculated using equation G-1.

$$\log(y) = C_0 + C_I \log(x)$$
 (eq G-1) where: $C_0 = 2.3007476$
$$C_I = 0.59040570$$

$$y = \text{leakage rate, L/s}$$

$$x = \text{internal pressure, Pa}$$

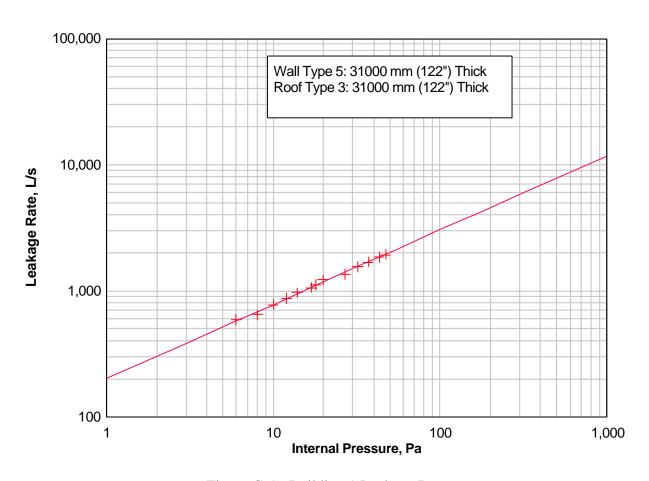


Figure G-1. Building 1 Leakage Rate.

G-4. Building Number 2.

Building number 2 is a poured concrete structure with 0.66-m-thick walls and roof. The facility has no windows. Leakage rate versus internal pressure is shown in Figure G-2. Building leakage rates can be calculated using equation G-2.

$$\log(y) = C_0 + C_1 \log(x) \tag{eq G-2}$$

where: $C_0 = 1.8871234$ $C_1 = 0.54579516$ y = leakage rate, L/sx = internal pressure, Pa

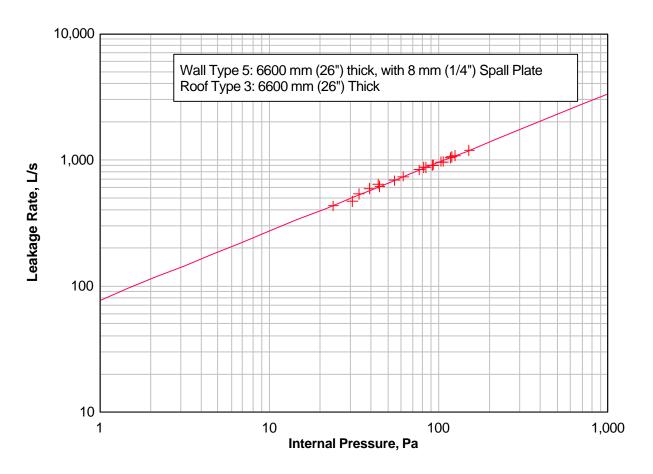


Figure G-2. Building 2 Leakage Rate.

G-5. Building Number 3.

Building number 3 is a poured concrete structure with 0.66-m-thick walls and roof. The facility has no windows. Leakage rate versus internal pressure is shown in Figure G-3. Building leakage rates can be calculated using equation G-3.

$$\log(y) = C_0 + C_1 \log(x) \tag{eq G-3}$$

where: $C_0 = 1.7654878$ $C_1 = 0.52904921$ y = leakage rate, L/sx = internal pressure, Pa

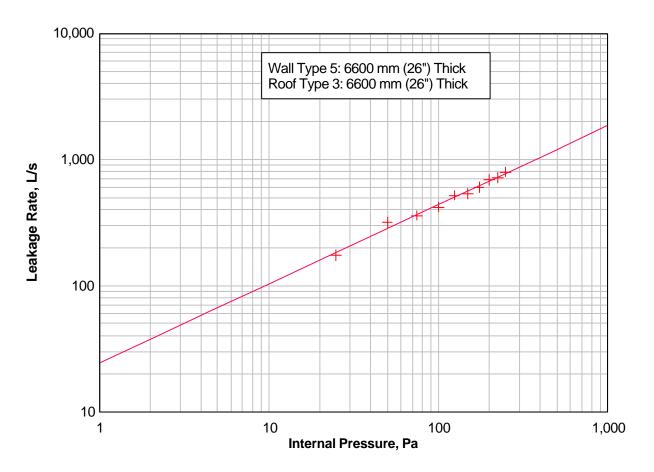


Figure G-3. Building 4 Leakage Rate.

G-6. Building Number 4.

Building number 4 is a poured concrete structure with 0.66-m-thick walls and roof. The facility has no windows. Leakage rate versus internal pressure is shown in Figure G-4. Building leakage rates can be calculated using equation G-4.

$$\log(y) = C_0 + C_1 \log(x) \tag{eq G-4}$$

where: $C_0 = 1.3882766$ $C_1 = 0.62650449$ y = leakage rate, L/sx = internal pressure, Pa

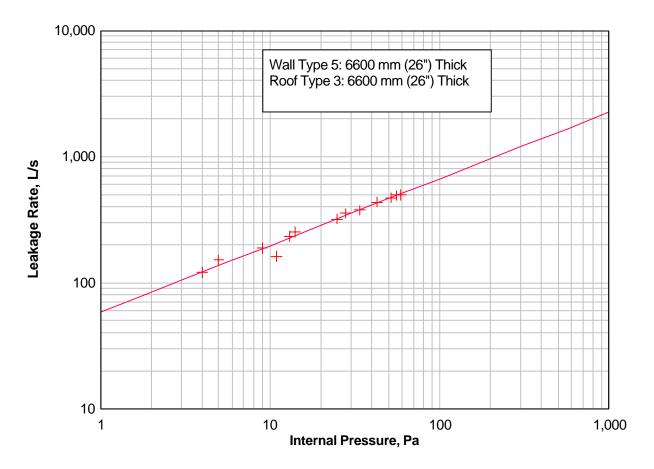


Figure G-4. Building 3 Leakage Rate.

G-7. Building Number 5.

Building number 5 is constructed of concrete block walls and cast-in-place concrete roof. The facility has 26 sliding windows and the majority are relatively tight. Leakage rate versus internal pressure is shown in Figure G-5. Building leakage rates can be calculated using equation G-5.

$$\log(y) = C_0 + C_1 \log(x) \tag{eq G-5}$$

where: $C_0 = 2.3433194$ $C_1 = 0.63452276$ y = leakage rate, L/sx = internal pressure, Pa

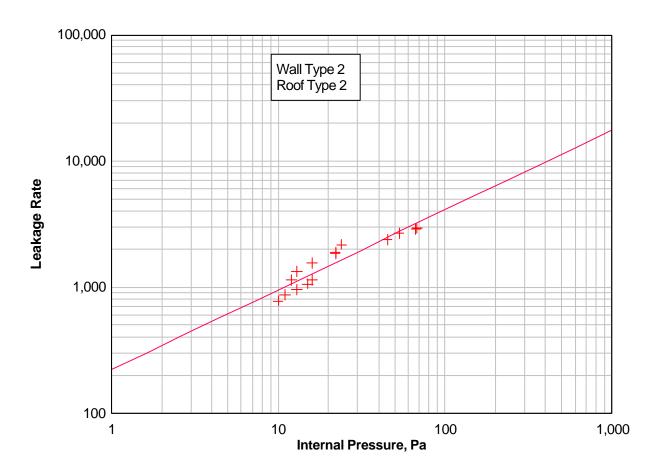


Figure G-5. Building 5 Leakage Rate.

G-8. Building Number 6.

Building number 6 has block walls with an insulated metal siding upper portion. The roof is standing seam metal. A moderate number of fiberglass windows are installed in the upper portions of the wall. Leakage rate versus internal pressure is shown in Figure G-6. Building leakage rates can be calculated using equation G-6.

$$\log(y) = C_0 + C_1 \log(x) \tag{eq G-6}$$

where: $C_0 = 2.8625607$ $C_1 = 0.44496218$ y = leakage rate, L/sx = internal pressure, Pa

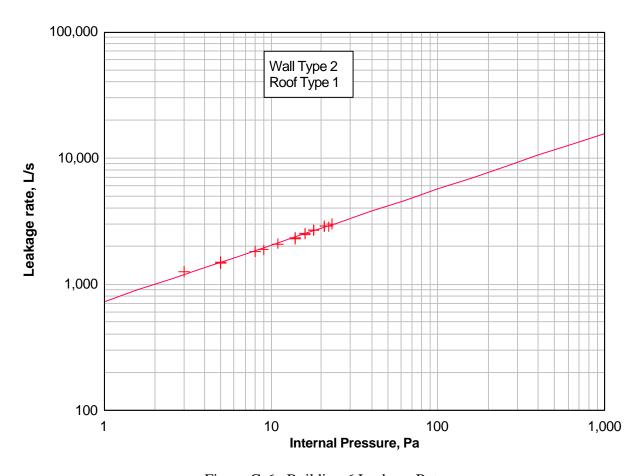


Figure G-6. Building 6 Leakage Rate.

G-9. Building Number 7.

Building number 7 has block walls with an insulated metal siding upper portion. The roof is standing seam metal. A large number of windows are installed in the upper portions of the wall. Leakage rate versus internal pressure is shown in Figure G-7. Building leakage rates can be calculated using equation G-7.

$$\log(y) = C_0 + C_1 \log(x) \tag{eq G-7}$$

where: $C_0 = 2.6334308$ $C_1 = 0.58162360$ y = leakage rate, L/sx = internal pressure, Pa

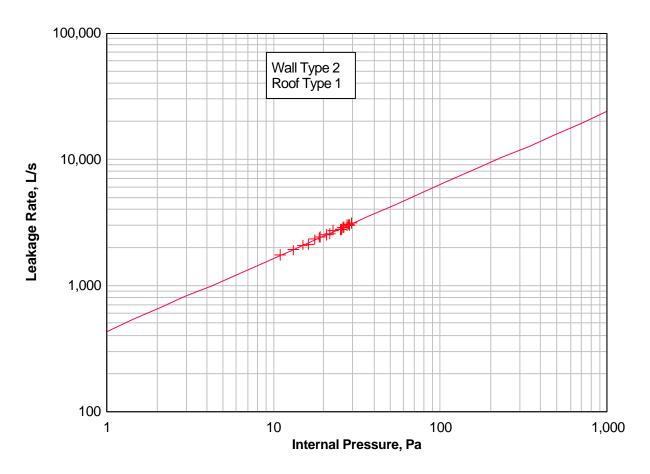


Figure G-7. Building 7 Leakage Rate.

G-10. Building Number 8.

Building number 8 is a two-story facility with block walls and a concrete roof. The facility has a moderate number of windows. Leakage rate versus internal pressure is shown in Figure G-8. Building leakage rates can be calculated using equation G-8.

$$\log(y) = C_0 + C_I \log(x)$$
 (eq G-8)

where: $C_0 = 2.9324394$ $C_1 = 0.38805886$ y = leakage rate, L/sx = internal pressure, Pa

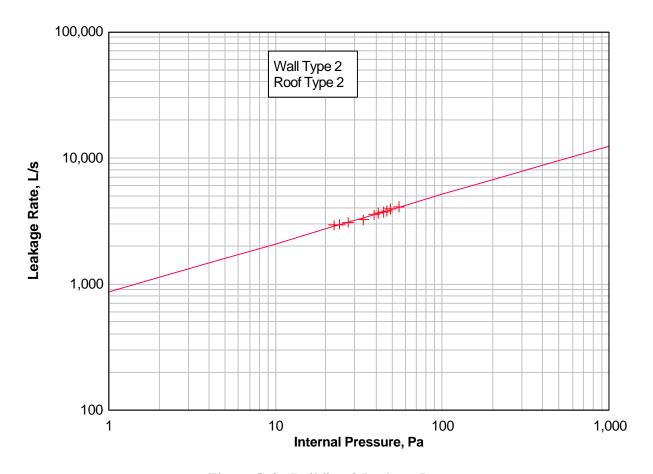


Figure G-8. Building 8 Leakage Rate.